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This paper outlines a new principle for damping lateral vibrations of rotary systems.

According to this principle, no changes in the visco-elastic properties of the system to be

damped are required. The method is based on the generation of a harmonic additive to

the constant speed of rotation that provides significant damping of lateral vibrations at

averaging and additionally with the help of direct numerical integration. The solution is

shown to represent Fourier series containing Bessel functions. Consequently, proper

choice of the parameters of the additional harmonic component ensuring that the Bessel

functions have minimum values results from a minimization of the solution itself. Thus,

the analytical solution and numerical results prove this concept by showing an essential

decrease of the amplitudes of lateral vibrations of the damped system compared with

those of the undamped system. The physical explanation of this effect is presented.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Experimental studies and exploitation of rotating machinery (turbines, centrifugal pumps, gears, etc.) show that there
exist ranges of rotation speeds for which vibration can reach undesirably high values. This situation can happen both
during the startup process, when the system has to pass the critical speeds, and during the shutdown process. Sometimes,
the designed operating speed may happen to be close to a critical speed. Finally, a shift of natural frequencies towards the
operating speed can occur. Such a change in oscillatory properties can occur during the operation of such machinery due to
numerous reasons, such as wear of bearings, change of the mass, and imbalance of impellers due to sedimentation of
deposits [1,2].

There exist a large number of papers and patents related to different vibration damping techniques. These publications
can be subdivided into several large groups using the damping technique as a classification criterion. The most common
method is the so-called structural vibration damping [3–12], which is generally based on the application of structural
elements of various complexities. In particular, elastomers [13–15], special coatings [17,18], or even shape memory alloys
[19] are commonly used. Rotating machinery may also have self-balancing devices [20]. Vibrations may be damped using
journal bearings that employ either liquid [21–23] or a compressed air [24]. The application of an electromagnetic field
allows for the dampening of vibrations using rheological fluid [25,26], piezo-electric actuators, magnetostrictors, magnetic
bearings, etc. [27–38]. Systems of different complexities can be designed for vibration damping control [39].
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Here, we study the damping of lateral vibrations of a rotary system by control of the rev/min; i.e., controlling the motor
speed [42]. This technique is totally different from all of the aforementioned vibration damping methods and requires no
changes of visco-elastic properties.

2. The model

The system under consideration is represented by a motor coupled to an unbalanced disk placed in the center of a
weightless and torsionless shaft (see Fig. 1). Here, e is the disk eccentricity, W is the geometric center of the disk, point W

designates the disk geometrical center, point S designates its center of gravity, and point O designates the axis of the
unperturbed shaft. When rotor speed (frequency of rotation) approaches a resonance zone, a harmonic component is added
to the constant torque. Such a harmonic additive may also be added during the operating mode (behind the resonance
zone) when the control system indicates an undesirably high amplitude of lateral vibration. When the damping system is
turned on, the constant motor speed undergoes harmonic modulation. The governing equations have the form

€x þ
eo0

c
_x þ xþ

ko0

c
ð _x þ _jyÞ ¼ e cosj;

€y þ
eo0

c
_y þ yþ

ko0

c
ð _y � _jxÞ ¼ e sinj;

_j ¼ Oþ AnO cos ðnOtþ c0Þ: (1)

Here, x and y are the coordinates of the disk’s center of gravity in the space-fixed coordinate system perpendicular to the
unperturbed shaft axis, whose origin is located at the shaft; e and k are the coefficients of external and internal damping,
respectively; c is the lateral stiffness of the shaft; j is the angle of rotation, o0 is the first natural frequency of the rotor;
o is the speed of rotation; O=o/o0 is the non-dimensional speed of rotation; A and c0 are the amplitude and the phase
shift of the harmonic additive; n is an integer. Variables, parameters and time are dimensionless in system (1).
Differentiation is done over a dimensionless time o0t=t.

We suppose that the coefficients of external and internal damping as well as the rotor eccentricity are small, i.e.

c=m ¼ o2
0; eo0=c ¼ mh; ko0=c ¼ mh1; e ¼ mn; O2

� 1 ¼ mD;

where m51 is a small parameter. In this case, system (1) has the form

_x ¼ x1; _x1 ¼ �O
2xþ mF1; _y ¼ y1; _y1 ¼ �O

2yþ mF2; _c ¼ O: (2)

Here, F1 ¼ n cosj� ðhþ h1Þx1 � h1 _jyþ Dx, F2 ¼ n sinj� ðhþ h1Þy1 þ h1 _jxþ Dy, j=cþA sin(ncþc0).
Our goal is to answer the question: would it be possible to choose the parameters of modulation A, n, c0 in such a way

that the amplitudes of lateral vibrations would be minimized, and how could the choice of these parameters be optimized?
Systems (1) and (2) are the systems of two non-autonomous linear oscillators. Each of these oscillators represents a

resonance filter of the frequency O, which corresponds to the first harmonic in the spectrum of external disturbance

cosj ¼ cosðcþ A sinðncþ c0ÞÞ; sinj ¼ sinðcþ A sinðncþ c0ÞÞ; c ¼ Ot:

These functions may be decomposed into the Fourier series with coefficients Jk(A) representing Bessel functions of the
first kind of integer argument. Naturally, because the model under consideration is linear, then solutions can also be
represented as Fourier series. If the first harmonic that has the highest amplitude would be damped by a proper choice of
the parameters of modulation, then the amplitudes of the remaining harmonics will have values of the smaller order of
�m51. This characteristic, explained by the filtering properties of the oscillators, means that the maximum radial
displacements xmax, ymax will have the same order �m (note that x(t), y(t) are the mutifrequency functions). Thus, our
objective is to provide damping of the first harmonic.

To solve this problem, one has to first search for the solution of the system (2) in a form of the Fourier series with
undetermined coefficients, and second, determine these coefficients and further minimize the amplitude of the first
harmonic. At the same time, the stability of the solution must be ensured. The problem is customarily approached using the
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Fig. 1. The model. Left: shaft with imbalanced disk; middle: shaft deflection; right: disk plane (view from above) showing coordinate plane and eccentricity.
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method of averaging [40,41], which can be briefly explained as follows. First, the original system, which is defined in a
cylindrical phase space, is reduced to a system in a standard form with a fast spinning phase [40] using changes of the
variables and the introduction of a small parameter. Second, the obtained system is averaged over the fast spinning phase.
Third, the existence of a globally asymptotically stable invariant manifold in the phase space of the averaged system is to be
proved. This step helps to replace the consideration of the averaged system with consideration of a simpler system, whose
phase space is placed at the invariant manifold. This system has a smaller dimension compared with the averaged one
but at the same time contains all the averaged system’s qualitative properties. The method of averaging is explained
in detail in [40,41].

Using the change of the variables of the form

x ¼ u1 sincþ v1 cosc; x1 ¼ ðu1 cosc� v1 sincÞO;
y ¼ u2 sincþ v2 cosc; y1 ¼ ðu2 cosc� v2 sincÞO;

we reduce system (2) to the standard form with a fast spinning phase [40,41]

_u1 ¼ mF1 cosc; _v1 ¼ �mF1 sinc; _u2 ¼ mF2 cosc; _v2 ¼ �mF2 sinc; _c ¼ O: (3)

The method of averaging significantly simplifies further study, namely by replacing the study of periodic motions in the
original system (3) by the study of equilibriums of the averaged system. Prior to the averaging procedure [44], let us note
that the values of the variables

/ _jy sincSc;/ _jy coscSc;/ _jx sincSc;/ _jx coscSc;

/cosðcþ A sinðncþ c0ÞÞsincSc;/cosðcþ A sinðncþ c0ÞÞcoscSc;

/sincðcþ A sinðncþ c0ÞÞsincSc;/sinðcþ A sinðncþc0ÞÞcoscSc;

strongly depend on the parameter n. Namely, the right-hand sides of the equations of the averaged system are different for
different n. For this reason, we have to consider three qualitatively different cases: (1) n is either any integer number from
the interval n42, any fractional number from the interval 0ono1 or any irrational one; (2) n=1; (3) n=2. Let us now
consider each case in more detail and illustrate them with the results of numerical modelling.

Case 1: n is either any integer number from the interval n42, any fractional number of the interval 0ono1, or any
irrational one. Having averaged system (3) over the fast-spinning phase c and transforming the time: mt=tnew, we obtain
equations in the first approximation with respect to the small parameter. These equations have the form

_u1 ¼ �
hþ h1

2
u1 �

h1

2
v2 þ

D
2

v1 þ
1

2
nI0ðAÞ;

_v1 ¼ �
hþ h1

2
v1 þ

h1

2
u2 �

D
2

u1;

_u2 ¼ �
hþ h1

2
u2 þ

h1

2
v1 þ

D
2

v2;

_v2 ¼ �
hþ h1

2
v2 �

h1

2
u1 �

D
2

u2 �
1

2
nI0ðAÞ:

(4)

Here I0(A) is the Bessel function of the first kind [45]. In this case, equations are independent of a phase shift c0.

Value A� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

10 þ u2
20 þ v2

10 þ v2
20

q
, where u10, u20, v10, v20 are the coordinates of the equilibrium of linear system (4),

represents the amplitude of the first harmonic. Our goal is to minimize this value.
Note that system (4) has a stable invariant manifold M={u1=�v2, u2=v1} [43].
Consider now system at the manifold M={u1=�v2=u, u2=v1=v}:

_u ¼ �
h

2
uþ

D
2

vþ
n
2

I0ðAÞ; _v ¼ �
h

2
v�

D
2

u: (5)

Values of the coordinates of equilibrium (u0, v0) of system (5) are proportional to I0(A). The amplitude of the first
harmonic is minimal for minimal values of |I0(A)| from the interval of allowed values of the amplitude of modulation A. The
amplitude of the first harmonic is equal to zero (full damping) for all A, for which I0(A)=0. The Bessel function I0(A) has an
infinite number of zeroes. In particular, the first zero corresponds to A=2.4 (minimal value of A). Having substituted A=2.4
into system (5), we obtain a stable equilibrium u=0, v=0.

Thus, having chosen A=2.4, any integer n42 or any irrational n, and any value of the phase shift c0 (for instance, c0=0),
we obtain the full damping of the first harmonic of rotor lateral vibration. In this case, the amplitude of lateral vibration
comes to be of the order �m51.

Numerical study: Because internal damping does not affect the amplitude of lateral vibrations, instead of system (1), we
have studied an equivalent system of the form

m €x þ e _x þ cx ¼ ce cosj; m €y þ e _y þ cy ¼ ce sinj; _j ¼ Oþ AnO cos ðnOtÞ:

Hereinafter, the following dimensionless parameters are used:

m ¼ 1; e ¼ 0:1; c ¼ 25; e ¼ 1:
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Fig. 2. (a) time-history of solution x=x*(t) of system (1) for the undamped case, (b) lateral displacement x(o(t)) during the startup process and passage

through the first critical speed.
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Fig. 3. The case of n=3, A=2.4: (a) transient process of damping right after the modulation is switched on, (b) solution x=x*(t) versus time as a result of

damping at the first natural frequency, (c) lateral displacement x(o(t)) during the startup process and passage through the resonance zone, when the

modulation is continuously turned on.
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Fig. 2a shows a time-history of solution x=x*(t) of system (1) for the undamped case n=0. Fig. 2b shows the lateral
displacement x(o(t)) during the startup process and passage through the resonance zone.

Now, let us study what happens if the damping system is turned on, i.e., in the case when the motor speed modulation is
on. Generally, modulation can either be switched on at the certain moment of time when the system approaches the
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Fig. 4. The case of n=0.6, A=2.4: (a) solution x=x*(t) versus time as a result of damping at the first natural frequency, (b) lateral displacement x(o(t)) during

the startup process and passage through the resonance zone, when the modulation is continuously turned on.
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resonance zone, or can be turned on continuously right after system has started up. Let us consider both these cases. Fig. 3a
shows the transient process right after the modulation is turned on at the 20th second (n=3, A=2.4); one can see that the
vibration starts to decay immediately and later reach the very small values shown in Figs. 3b and 4a for the cases n=3, A=2.4
and n=0.6, A=2.4, respectively. Consider now the case when the modulation is turned on continuously. Lateral displacement
of the shaft x(o(t)) during the startup process and passage through the resonance zone is shown in Figs. 3c and 4b for the
cases n=3, A=2.4 and n=0.6, A=2.4, respectively.

For n=3, A=2.4, when the modulation is turned on near the first natural frequency, the damping ratio (ratio between the
maximal amplitudes of lateral vibration of damped and undamped systems) equals 217.4. For the continuously turned-on
damping system, when the system passes through the resonance zone, the damping ratio equals 7.7. The difference
between these coefficients is a result of the high Q-factor of the oscillatory system and due to excitation of self-vibrations.

For n=0.6, A=2.4, when modulation is turned on near the first natural frequency, the coefficient of damping equals 33.3. For the
continuously turned-on modulation, when the system passes through the resonance zone, the coefficient of damping equals 7.

Case 2: n=1 (modulation at the rotor speed). In this case, the averaged system has the form

_u1 ¼ �
hþ h1

2
u1 �

h1

2
v2 þ

D
2

v1 þ
n
2
ðI0 þ I2 cos 2c0Þ; _v1 ¼ �

hþ h1

2
v1 þ

h1

2
u2 �

D
2

u1 þ
n
2

I2 sin 2c0;

_u2 ¼ �
hþ h1

2
u2 þ

h1

2
v1 þ

D
2

v2 �
n
2

I2 sin 2c0; _v2 ¼ �
hþ h1

2
v2 �

h1

2
u1 �

D
2

u2 �
n
2
ðI0 � I2 cos 2c0Þ: (6)

The equilibrium of system (6) is stable. This equilibrium has zero coordinates independently of the phase c0 if
I0(A)=I2(A)=0 (normally, initial phase is hard to control). However, this system is inconsistent. In contrast to the previous
case, for n=1, there are no values of the parameter A for which the damping of the first harmonic would be full.
Nevertheless, there exists a value of amplitude of the modulator for which the amplitude of lateral vibration would be
minimal.

Numerical study: Fig. 5 shows the lateral displacement of the shaft x(o(t)) during the startup process and passage
through the resonance zone when the modulation is continuously turned on for the case of n=1, A=5.1.

When modulation is turned on near the first natural frequency, the damping ratio equals 6.4. For the continuously
turned on damping system, when the system passes through the resonance zone, the damping ratio equals 11.1.

Case 3: n=2 (modulation at the doubled rotor speed). In this case, averaged system has the form

_u1 ¼ �
hþ h1

2
u1 �

h1

2
v2 þ

D
2

v1 �
h1A

2
ð�u2 sinc0 þ v2 cosc0Þ þ

n
2
ðI0 � I1 cosc0Þ;

_v1 ¼ �
hþ h1

2
v1 þ

h1

2
u2 �

D
2

u1 þ
h1A

2
ð�u2 cosc0 � v2 sinc0Þ �

n
2

I1 sinc0;

_u2 ¼ �
hþ h1

2
u2 þ

h1

2
v1 þ

D
2

v2 þ
h1A

2
ð�u1 sinc0 þ v1 cosc0Þ þ

n
2

I1 sinc0;

_v2 ¼ �
hþ h1

2
v2 �

h1

2
u1 �

D
2

u2 �
h1A

2
ð�u1 cosc0 � v1 sinc0Þ �

n
2
ðI0 þ I1 cosc0Þ: (7)

Numerical study: Fig. 6 shows lateral displacement of the shaft x(o(t)) during the startup process and passage through
the resonance zone, when the modulation is continuously turned on (n=2, A=5.5).

When modulation is turned on near the first natural frequency, the damping ratio equals 2.85. For the continuously
turned on modulation, when system passes through the resonance zone, the damping ratio equals 33.3.
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It is clear that for real systems, the right choice of the parameters of damping should take into account system inertia,
the possibility of generation of undesired torsional vibrations, etc. Fig. 7 shows the maximal dimensionless lateral
displacement normalized by a maximal displacement at the first resonant frequency versus n for A=2.4 (Fig. 7a) and versus
A for n=0.2 (Fig. 7b). This helps understand how the optimal pair of control parameters could be chosen.

We would like to note that the proposed process of vibration damping could be implemented as an integral part of
automatic control system.

3. Conclusions

We propose a new technique for damping the lateral vibrations of rotary machinery, based on the generation of an
additional harmonic component to the constant speed of rotation of the form AnO cos(nOtþc0). It is desirable to select the
smallest values A and n among the possible ones. Note that the number n can be not only an integer number but also a
fractional or even irrational number. The motor plays a role of a control system. The harmonic component in rev/min may
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be realized through a harmonic additive to the electric current. For each rotary system, the best set of A and n may be
determined through mathematical models and experimental study. Generally speaking, there exist an infinite set of pairs
for A and n, and for the each one, the degree of damping will be different. An active vibration damping control system can
be made based on this concept. Experimental verification of the proposed technique is required.
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